Entropy Based Pruning for Non-Negative Matrix Based Language Models with Contextual Features
نویسندگان
چکیده
Non-negative matrix based language models have been recently introduced [1] as a computationally efficient alternative to other feature-based models such as maximum-entropy models. We present a new entropy based pruning algorithm for this class of language models, which is fast and scalable. We present perplexity and word error rate results and compare these against regular n-gram pruning. We also train models with location and personalization features and report results at various pruning thresholds. We demonstrate that contextual features are helpful over the vanilla model even after pruning to a similar size.
منابع مشابه
Pruning sparse non-negative matrix n-gram language models
In this paper we present a pruning algorithm and experimental results for our recently proposed Sparse Non-negative Matrix (SNM) family of language models (LMs). We show that when trained with only n-gram features SNMLM pruning based on a mutual information criterion yields the best known pruned model on the One Billion Word Language Model Benchmark, reducing perplexity with 18% and 57% over Ka...
متن کاملA Model for Detecting of Persian Rumors based on the Analysis of Contextual Features in the Content of Social Networks
The rumor is a collective attempt to interpret a vague but attractive situation by using the power of words. Therefore, identifying the rumor language can be helpful in identifying it. The previous research has focused more on the contextual information to reply tweets and less on the content features of the original rumor to address the rumor detection problem. Most of the studies have been in...
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کاملBuilding Compact N-gram Language Models Incrementally
In traditional n-gram language modeling, we collect the statistics for all n-grams observed in the training set up to a certain order. The model can then be pruned down to a more compact size with some loss in modeling accuracy. One of the more principled methods for pruning the model is the entropy-based pruning proposed by Stolcke (1998). In this paper, we present an algorithm for incremental...
متن کاملEntropy-based Pruning of Backoff Language Models
A criterion for pruning parameters from N-gram backoff language models is developed, based on the relative entropy between the original and the pruned model. It is shown that the relative entropy resulting from pruning a single N-gram can be computed exactly and efficiently for backoff models. The relative entropy measure can be expressed as a relative change in training set perplexity. This le...
متن کامل